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Abstract 

Several molecular modifications accumulate in the human organism with increasing age. 

Some of these „molecular clocks“ in DNA and in proteins open up promising approaches for 

the development of methods for forensic age estimation. A natural limitation of these 

methods arises from the fact that the chronological age is determined only indirectly by 

analyzing defined molecular changes that occur during aging. These changes are not linked 

exclusively to the expired life span but may be influenced significantly by intrinsic and 

extrinsic factors in the complex process of individual aging.  

We tested the hypothesis that a combined use of different “molecular clocks” in different 

tissues results in more precise age estimates because this approach addresses the complex 

ageing processes in a more comprehensive way. Two molecular clocks (accumulation of D-

aspartic acid (D-Asp), accumulation of pentosidine (PEN)) in two different tissues (annulus 

fibrosus of intervertebral discs and elastic cartilage of the epiglottis) were analyzed in 95 

cases, and uni- and multivariate models for age estimation were generated. 

The more parameters were included in the models for age estimation, the smaller the mean 

absolute errors (MAE) became. While the MAEs were 7.5 – 11.0 years in univariate models, 

a multivariate model based on the two protein clocks in the two tissues resulted in a MAE of 

4.0 years.  

These results support our hypothesis. The tested approach of a combined analysis of 

different molecular clocks analyzed in different tissues opens up new possibilities in 

postmortem age estimation. In a next step, we will add the epigenetic clock (DNA 

methylation) to our protein clocks (PEN, D-Asp) and expand our set of tissues. 

 

Keywords: Age estimation, pentosidine, D-aspartic acid, machine learning, age prediction 

model, molecular clocks 
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Introduction 

In times of migration and flight age estimation is becoming an increasingly important issue in 

Forensic Medicine. This applies not only for age estimation in living young migrants without 

valid documents, but also for age estimation in the context of the identification of unknown 

deceased. Postmortem age estimation may be a methodological challenge due to 

putrefaction and decomposition of a body; in such cases, the applicability of a method may 

depend on the extent of postmortem changes and the availability of tissues. 

Generally, methods of age estimation need to be accurate enough to fulfill the demands in 

forensic practice [1]. Therefore, the core objective in the development of new methods or the 

optimization of already established methods for age estimation must be to achieve the 

highest possible accuracy.  

In the last decade, molecular methods of age estimation have attracted much attention. So 

called “molecular clocks” like the racemization of aspartic acid or the accumulation of 

pentosidine in proteins (see [2–5]) and, most recently, the methylation of DNA (see [2–4, 6–

12]) have been identified and their usability for age estimation has been explored.  

DNA methylation (mDNA) is used as basis for epigenetic age estimation. Age-dependent 

methylation markers have been identified in samples from different tissues and body fluids, 

and various models for mDNA based age estimation have already been proposed ([13], for 

review see [6, 8, 10–12, 14]). However, it is well known that epigenetic changes in DNA are 

influenced by intrinsic factors (e.g. genetic factors, ethnicity, diseases) and extrinsic factors 

(e.g. environmental conditions, lifestyle) [15, 16]. The implications of such influences on the 

ultimately achievable accuracy of mDNA based approaches for age estimation are not finally 

clear and are subject of current research [10, 11, 16–18].  

The accumulation of D-aspartic acid (D-Asp) is the result of a non-enzymatic conversion of L-

asparagine residues and L-aspartic acid residues into their D-forms (for details see [3, 19, 

20]). It has been described in multiple proteins and tissues (for review see [2], data regarding 

further proteins/tissues in [21–23]). Age estimation based on the D-Asp content in dentinal 

protein is one of the most accurate methods for age estimation in adults. The application of 

this approach in forensic scenarios has been proposed decades ago (e.g. [24–26]). In the 

meantime it has been increasingly established in forensic practice (e.g. [27–30]). This protein 

clock is very robust as long as the integrity of the corresponding tissue is guaranteed [25]. So 

far there is no indication of genetic influences on this clock, and ethnicity seems to have no 

impact [31]. Open research questions concern in particular the applicability of the method to 

more complex tissues than dentine. 
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Pentosidine (PEN) is an advanced glycation end product. This group of posttranslational 

protein modifications is the result of glycation of proteins which is a non-enzymatic reaction 

of free amino groups (mainly of arginine and lysine) of proteins with glucose or with other 

reducing carbohydrates [32–35]. It has already been shown that PEN accumulates in 

permanent and long-living proteins during lifetime in several tissues [36–43]. Theoretically, 

elevated blood sugar levels in patients with diabetes mellitus may result in an increased 

formation of PEN [32, 35, 44, 45], which may limit the applicability of this approach to 

forensic age estimation. However, up to now there are only a few systematic studies 

regarding this protein clock. 

Even promising molecular methods such as methods based on mDNA still have a 

considerable error range, which currently limits their practical use [7]. In light of the 

complexity of the biological aging process this it is not surprising.  

The best models for age prediction based on mDNA described so far use combinations of up 

to hundreds of markers and are associated with mean absolute errors (MAE) of 3 - 5 years at 

best (for review see [6–8, 10, 11]). It has to be taken into account, however, that the 

deviation between estimated and real age may be considerably higher (theoretically a 

multiple of the MAE) in single cases [7]. Methods based on the accumulation of PEN have an 

even larger error range [36, 41]. Age estimation based on the accumulation of D-Asp shows 

quite accurate results when applied to dentine [5, 24–27, 29]. In contrast, the application of 

this approach to other, more complex tissues reveal considerably less accurate results; this 

is especially evident, if tissue samples are analyzed without a preceding protein purification 

[21–23, 46–52]. 

If age estimation has to be performed postmortem, it is - dependent on the state of 

decomposition of a body - possible to analyze several molecular clocks in several tissues. 

Different molecular clocks in different tissues underlie different influences since they are part 

of different biological subsystems. A combination of different and at best independent 

molecular clocks for age estimation may better record complex ageing processes and 

balance the effects of different influence factors on the accuracy of age estimation. 

We tested this hypothesis for the indication “postmortem age estimation” 

- by analyzing two molecular clocks in proteins (accumulation of D-Asp, accumulation of PEN) 

in two different tissues (annulus fibrosus of intervertebral discs (IVD) and elastic cartilage of 

epiglottis (EPI)) from 95 individuals and 

- by generating uni- and multivariate models for age estimation based on the collected data. 

The two tissues (IVD and EPI) were chosen since they are relatively robust against 

putrefaction and can be prepared easily. 
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Material and Methods 

Samples of intervertebral discs (IVD) and epiglottis (EPI) were drawn from 95 individuals (47 

females, 48 males, age range 0.06 - 98 years) during autopsy. All available documents 

(especially autopsy protocols and circumstances of each case) were checked for relevant 

information regarding the case history; particular attention was paid to evidence of diabetes 

mellitus. The postmortem intervals of these 95 cases were between 1 and 12 days.  

In addition, some cases with special postmortem conditions were examined: 9 cases with 

advanced putrefaction (postmortem intervals a few days to about three weeks; in one of 

these cases EPI was not available anymore), 3 burned bodies (one incompletely, and two 

totally charred) and 3 exhumed bodies (postmortem intervals 54, 59, and 68 days, 

respectively, with advanced putrefaction). 

The following parameters were determined in the IVD and EPI samples: 

- IVD: D-Asp in an enzymatically purified collagen fraction, 

- IVD: PEN in an enzymatically purified collagen fraction, 

- EPI: D-Asp in total tissue,  

- EPI: PEN in an enzymatically purified collagen/elastin fraction  

The relationship between each of the 4 parameters and age was tested, and uni- and 

multivariate models for age estimation based on these parameters were developed.  

 

Preparation of the IVD samples 

The intervertebral disc L2/3 was removed as intact as possible, washed with water and 

stored at - 80 °C until further preparation.  

Degenerative changes of the discs were documented and classified into the two groups ”no 

or slightly” and “highly” according to the morphology of the anterior annulus fibrosus. “Highly” 

degenerative discs exhibited findings that indicate severe alterations (e.g. radial fissures or 

scar tissue) with a destruction of the typical morphological structure. 41 samples (from 

individuals with ages between 46 and 98 years) exhibited such “highly” degenerative 

changes. 

For further preparation the IVD samples were thawed. Approximately 0.5 – 0.8 cm of the 

outer layers of the anterior annulus fibrosus were cut off to remove adjacent tissue and small 
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samples (1 x 1 cm) were prepared. These samples were coarsely crushed, dipped in liquid 

nitrogen, crushed again and pulverized. The pulverized material was stored at -20 °C until 

further processing (purification of collagen). 

 

Preparation of the EPI samples 

The upper two thirds of the epiglottis were taken during autopsy and stored at -80 °C until 

further preparation. 

For further preparation the samples were thawed. After removal of the mucosa and 

surrounding tissue, the cartilage was cut into small pieces. A small piece (about 2 mm in 

diameter) was put into a sample tube for analysis of D-Asp and stored at -20 °C until 

analysis. Another piece of tissue (about 8 mm in diameter) was wrapped in aluminum foil, 

frozen in liquid nitrogen and crushed. The pulverized material was stored at -20 °C until 

further processing (purification of collagen/elastin).  

 

Enzymatic purification of collagen (IVD) and collagen/elastin (EPI)  

IVD and EPI samples were enzymatically treated according to the protocol of Sivan et al. 

[53], based on the method of Schmidt et al. [54]. In short, a proteolytic enzymatic treatment is 

applied to remove all non-collagen proteins such as proteoglycans with Chondroitinase ABC 

(0.125 unit/ml in 0.05 M Tris-Base/0.06 M sodium acetate buffer (pH 8); for 24 h at 37 °C), 

Streptomyces hyaluronidase (1 unit/ml in 0.05 M Tris-Base/0.15 M NaCl buffer (pH 6); for 24 

h at 37 °C) and trypsin (1 mg/ml in 0.05 M Na2HPO4/0.15 M NaCl buffer (pH 7.2); for 16 h at 

37 °C). Purified samples were dried by freeze drying and kept at - 80 °C until further use. 

The quality of the purification was evaluated by amino acid analysis performed by high 

performance liquid chromatography (HPLC) according to the method of Dobberstein et al. 

[21]. An aliquot of each purified sample was transferred in a Pyrex tube and hydrolyzed in 1 

ml of a 6 N HCl for 24 h at 110 °C. Liquid in excess was removed overnight under vacuum.  

The dried hydrolysates were then dissolved  Human collagen type I 

(Sigma-Aldrich/Merck KGaA, Darmstadt, Germany) and bovine elastin (Sigma-Aldrich/Merck 

KGaA, Darmstadt, Germany) served as external standards for the adjustment of the amino 

acid distribution. 

Analyzes were performed by HPLC (HPLC 1100 Series, Agilent, CA). OPA reagent (o-

phthaldialdehyde) was used for precolumn derivatization of the primary amino acids, 

secondary amino acids were derivatized using FMOC (9-flourenylmethylchloroformate). 

Separation was accomplished with a C18 column (Hypersil BDS, C18 250 × 3 mm, particle 
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size 5 m; Thermo Electron GmbH, Dreieich, Germany) and a mobile phase consisted of 

eluents A (40 mM NaH2PO4, 1.5 mM sodium azide) and B (45 % methanol, 45 % 

acetonitrile, 10 % H2O) according to Heems et al. [55]. After an initial equilibration step of 

about 5 min, the amino acid derivatives were detected over a period of 50 minutes using a 

binary gradient. The flow rate was constant at 1.2 ml/min and the column temperature at 40 

°C

Analysis of the FMOC derivatives was performed after a 

 were used. Signal identification and quantification were carried out 

by a calibrated external standard. 

 

AAR analysis 

The extent of aspartic acid racemization was determined by HPLC according to the method 

of Kaufman and Manley [56], modified by Dobberstein et al. [21]. An aliquot of each sample 

(IVD or EPI) was hydrolyzed in 1 ml 6 N hydrochloric acid for 6 h at 100 °C in Pyrex tubes. 

The excess liquid was removed overnight under vacuum. Samples were dissolved in 1 ml 

sample buffer (0.01 M HCL with 1.5 mM sodium azide and 0.03 mM L-homo-arginine). For 

HPLC analysis, a C18 column from Thermo Scientific (Hypersil BDS C18, 250 x 3 mm, 

The mobile phase consisted of the 

eluents A (23 mM sodium acetate, 1.5 mM sodium azide, 1 mM EDTA) and B (92.3 % 

methanol, 7.7 % acetonitrile). The amino acid enantiomers were detected by a binary 

gradient over a period of 115 minutes at a constant flow rate of 0.56 ml/min. Amino acids 

were 

445 nm. L- and D- aspartic acid residues were identified using the retention times of the 

amino acids in a standard solution. The accumulation of D-Asp was described by the term ln 

((1+D/L)/(1-D/L)) (see [20]). 

 

PEN analysis 

PEN concentrations were determined by HPLC as described by Greis et al. [36]. Aliquots of 

IVD or EPI samples (3.8 - 10.7 mg and 0.7 - 10.8 mg, respectively) were hydrolyzed in 1 mL 

6 N HCl for 18 h at 110 °C. The samples were dried overnight in a desiccator, then dissolved 

in 1 ml 0.01 M heptafluorobutyric acid (HFBA, Thermo Scientific, Rockford, IL, in HPLC-

water, HiPerSolv Chromanorm, VWR International), filtrated (syringe filters, pore diameter: 

0.45 µm, diameter: 25 mm, VWR International) and dried again overnight in a desiccator. For 

HPLC analysis, the dried residues were dissolved in 200 µL pyridoxine-HFBA (pyridoxine 

2.068815 µmol/mL in 0.01 M HFBA) for IVD and 250 µL for EPI, respectively. Calibration 
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curve was established with standard PEN samples (pentosidine 0.03303 nmol/mL in 0.01 M 

HFBA, Cayman Chemical). 50 µL of each sample were injected into the HPLC system 

(HPLC 1100 Series, Agilent, CA). A semipreparative column (OnyxTM Monolithic Semi-PREP 

C18, LC Column 100 x 10 mm, Phenomenex, CA) was used as stationary phase. Mobile 

Phase consists of 0.1 % HFBA (eluent A) and acetonitrile (eluent B, LiChrosolv, Merck 

KGaA, Darmstadt); a linear gradient program of 10 - 85 % acetonitrile from 0 to 32 min with 

0.1 % HFBA was used. The flow rate was 1 mL/min and the column temperature was set to 

25 °C. Detection was done at wavelength 335/385 nm. Data were analyzed using 

„HPChemStation“. PEN was identified by its retention time; its quantification was carried out 

by determination of the peak area and use of a calibration curve.  

 

Statistics  

Classic descriptive statistics 

The relationship between chronological age and the accumulation of D-Asp and PEN was 

tested by rank correlation, and the corresponding correlation coefficients (Spearman) were 

determined. 

Development of multivariate age predicting models by a machine learning approach 

Multivariate prediction of individual age was performed using an ensemble of Gaussian 

Process Regression (GPR) predictors. The key idea behind an ensemble predictor is to 

repeatedly fit a model for mapping between the input data (features) and the target variable 

(chronological age) based on only subsets of the training observations, i.e., subjects [57]. 

That is, we repeatedly draw subsamples of subjects from the training set and then fit the 

GPR model on this lower number of subjects. This procedure yields a “weak learner” (as it is 

not based on the entire training sample) that is applied the test-data in order to yield one age 

prediction. These are then combined into a final prediction allowing to obtain better 

performance than obtainable from any of the constituent predictors by itself. In practice, we 

repeatedly sampled (with replacement) 95% of the training cases but retained only one 

instance of each individual case, which brings the additional advantage of variance in the 

size of the training set (cf. the number of unique observations contributing to a bootstrap). 

For each run, we trained a GPR model [58] to identify the best transformation (for this 

particular subsample of the subjects in the training set) between the input features and the 

target, i.e., to predict age based on the respective molecular markers as well as information 

on the available clinical data. As noted above, training was repeatedly performed on a subset 

of the training cases, yielding “weak learners” that were later combined to achieve the final 

prediction. For training each of the weak learners, we used the GPR algorithm implemented 



9 
 

in the MATLAB “statistics and machine learning toolbox” (fitrgp function) using a squared 

exponential kernel with a separate length scale per predictor. Gender and degeneration 

entered the model as categorical predictors, the remaining continuous features were 

standardized, i.e., centered and scaled by column mean and standard deviation, 

respectively. For both fit and prediction, the “exact” Gaussian process regression method 

was used. Each of these models based on a subset of the training subjects was then applied 

to predict the age of a held-out, "new" subject, i.e., a case that was not part of the training 

set. This prediction is recorded, and the procedure repeated 5,000 times with new, inde-

pendent sampling from the training data, each yielding a new prediction of the test case. 

These individual predictions are then averaged, a process termed "bagging", to yield the final 

prediction for the test case. Cycling over all possible test cases then yields an out-of-sample 

prediction of the age for each subject in the current sample. That is, when predicting the age 

of an individual subject, we do not use any information about that particular person when 

training the model. 

As a measure of prediction accuracy, we computed the mean absolute deviation (MAE). 

Importantly, MAE was calculated for “out-of-bag” predictions, i.e., assessing the age 

predicted for each individual subject when it was not part of the training set. More precisely, 

as noted above, we averaged the predictions of individual age based on the different weak 

learners fitted on subsamples of the training data (bagging). This yielded an age prediction 

for each case based on an ensemble that had no information on this particular subject, as it 

has not been part on the training set. We then computed the mean (averaged across 

subjects) absolute differences between the predicted (based on models trained on different 

cases) and the true chronological age for each subject. 

Here, our primary interest related to the prediction of individual age based on all data 

available for this particular subject, i.e., using both molecular clocks from both tissues as well 

as the information about sex and IVD degeneration. However, given the scenario of only 

having either epiglottis or IVD tissue available, we also fitted reduced models based on only 

one tissue and the information about sex and IVD degeneration. 

We developed multivariate models for the following scenarios: 

 

Model1 (only IVD available):  

PEN/IVD & D-Asp/IVD & sex & disc degeneration 

Model 2 (only EPI available):  

PEN/EPI & D-Asp/EPI & sex & disc degeneration 
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Model 3 (IVD and EPI available):   

PEN/IVD & D-Asp/IVD & PEN/EPI & D-Asp/EPI & sex & disc degeneration 

 

 

Results 

 

Sample Characteristics 

The enzymatic purification of the samples according to Sivan et al. [53] destroyed most 

proteins but collagen and elastin. As a consequence, after the purification step the IVD 

samples consisted mainly of collagen, the EPI samples mainly of elastin (and collagen), as 

demonstrated by the results of amino acid analysis (Figures 1a and 1b). 

 

PEN and D-Asp in IVD:  

Both PEN and D-Asp accumulate with increasing age in the IVD samples (r = 0.84 and r = 

0.73, respectively; Figures 2a and 2b). However, scattering of the values for both parameters 

increases substantially with age. 

By marking of the samples with highly degenerative changes (n = 41) in Figures 2a and 2b it 

becomes obvious that these samples contribute substantially to the increased scattering of 

data in higher ages. On the other hand, the relationship between PEN and D-Asp and age 

seems to remain close even in old age as long the integrity of the tissue is preserved (no 

degeneration); due to the low number of these cases (no degeneration in old ages) a further 

statistical analysis was not performed. 

 

As far as assessable, a diabetic metabolic disorder had been diagnosed in 9 cases (there 

was no information regarding the quality of therapy), these cases are indicated in Figure 3. 

Only 1 of these cases exhibited strikingly high PEN values. At the same time, however, there 

were highly degenerative changes in the tissue of this case.  

PEN and D-Asp seem to be robust regarding postmortem influencing factors. In Figure 4, the 

results for cases of advanced postmortem putrefaction (n = 9), burned bodies (n = 3) and 

exhumation (n = 3) are presented; the corresponding values do not deviate noticeably from 

the other values. 
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PEN and D-Asp in EPI: 

The results for the EPI samples were very similar to those for the IVD samples: PEN and D-

Asp do also accumulate in EPI with increasing age (r = 0.86 and r = 0.81, respectively; 

Figures 5a and 5b), and scattering of PEN and D-Asp-values increased with age. 

Again, there was no clear indication for higher PEN values in diabetic cases (n = 9, Figure 6), 

and PEN and D-Asp seem to be robust regarding postmortem influencing factors (Figures 7a 

and 7b) 

 

Multivariate models enable more precise age estimates   

Table 1 presents the MAEs of age estimation based on univariate predictions (based on 

either IVD/PEN, either IVD/D-Asp, either EPI/PEN or EPI/D-Asp) and on multivariate 

predictions, including either 2 parameters of one tissue (model 1 (IVD) and model 2 (EPI)) or 

4 parameters of both tissues (model 3). Age estimation based on the univariate models 

resulted in MAEs between 7.5 and 11.0 years, age estimation using the multivariate models 

resulted in MAEs of 6.3 years (model 1, IVD), 5.5 years (model 2, EPI) and 4.0 years (model 

3, IVD & EPI). Model 3 showed the strongest correlation between chronological age and 

estimated age (r=0.95; Figure 8). All models achieved considerably better results in cases 

with an age younger than 62 years than in cases older than 62 (age under 62 years: MAEs of 

4.7, 5.0 and 3.1 years in models 1, 2 and 3, respectively; age above 62 years: MAEs of 8.0, 

6.0 and 4.9 years, respectively). 

 

 

Discussion 

During the last decades it became evident, that several molecular modifications accumulate 

in the human organism with increasing age. Some of these „molecular clocks“ in DNA and in 

proteins open up promising approaches for the development of methods for forensic age 

estimation ([2, 4, 10–12]). Above all, the published data for approaches based on methylation 

of DNA (mDNA) and accumulation of D-aspartic acid (D-Asp) indicate a high potential of 

these methods (for review see [2, 6, 8, 12, 14]). However, one should not overlook the fact 

that even these approaches determine the chronological age only indirectly, namely by an 

epigenetic clock or a protein clock. The influence of diverse extrinsic and intrinsic factors on 

the individual aging process and thus also on these clocks should not be underestimated. 

Accordingly, one of the main problems of all molecular methods of age estimation is an 

increasing scattering of data with increasing age. It has already been proposed that a 
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combined use of different biomarkers of aging may address this problem and result in a 

higher accuracy of age estimation especially in older ages [59] via a better addressing of the 

complex processes of aging. 

We tested this hypothesis by analysis of two molecular clocks (accumulation of D-Asp, 

accumulation of pentosidine (PEN)) in two different tissues (annulus fibrosus of intervertebral 

discs (IVD) and elastic cartilage of epiglottis (EPI)) and the development of multivariate 

models for age estimation based on the collected data. 

 

PEN and D-Asp in collagen from the annulus fibrosus of intervertebral discs (IVD) 

An age dependent accumulation of D-Asp and PEN in IVD has already been described [41, 

53, 60]. For the first time, we analyzed the two parameters in combination. Furthermore, we 

analyzed relatively well defined protein fractions after purification of collagen (Figure 1a) 

instead of total protein [41, 60]. 

Basically, the PEN and D-Asp data confirm that collagen in the annulus fibrosus of IVD is a 

permanent protein that accumulates modifications during aging. The increasing scattering of 

data with age mirrors the individuality of the aging process in this tissue, just as the different 

extents of morphological degenerative changes do. Degeneration can result in tissue 

remodeling with breakdown of molecules as well as with a synthesis of new collagen which 

means an introduction of “young” protein into “old” tissue. Therefore, it is not surprising that 

even after purification of collagen, a relevant increase in the scattering of data in older ages 

and in cases with degenerative changes was observed (Figures 2a and 2b).  

Theoretically, the accumulation of PEN may be influenced by a diabetic metabolic disorder 

due the exposition of proteins to higher concentrations of glucose [32, 33, 45, 61]. There was 

no clear indication for a relevant deviation of the PEN values in diabetic individuals in the 

collective examined (Figure 3). However, we analyzed only a small number of samples from 

individuals with diabetes mellitus. Since the formation of PEN is a very slow process [33, 44, 

62, 63], it can be assumed that a relevant influence of diabetes mellitus on the overall 

amount of PEN will only be observed, if metabolic conditions with high levels of glucose 

persist for a long time. This assumption has to be tested by analysis of a sufficiently large set 

of cases with known medical history.  

Fortunately, PEN and D-Asp seem to be relatively robust against special postmortem 

conditions (Figures 4a, 4b). However, also this preliminary finding has to be checked by 

analysis of a large set of samples comprising cases with different postmortem conditions.  
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The MAEs of 9.5 years (IVD/PEN) and 11.0 years (IVD/D-Asp) for age estimation via 

univariate predictions (Table 1) are quite high. Theoretically, much better results could be 

achieved, if samples with degenerative changes are excluded, as proposed by Ritz and 

Schütz [60] and Pilin et al. [41]. However, this would limit the applicability of the method 

considerably, since advanced degeneration is a very common finding in older ages. 

 

PEN and D-Asp in elastin/collagen from the elastic cartilage from the epiglottis (EPI) 

Since an age-dependent accumulation of D-Asp in the elastic cartilage from the epiglottis has 

already been described [23], it could be anticipated that this tissue contains permanent 

proteins that might also accumulate PEN. Indeed, the collagen/elastin protein fraction (Figure 

1b) of the tissue exhibited an age-dependent accumulation of PEN (Figure 5a), and the 

accumulation of D-Asp in EPI was confirmed (Figure 5b). Overall, the results for the EPI 

samples were very similar to those for the IVD samples and can be interpreted in the same 

way. 

Age estimation based on only one EPI parameter was quite inaccurate as indicated by MAEs 

of 7.5 years (EPI/PEN) and of 8.6 years (EPI/D-Asp) (Table 1). 

 

Age estimation based on a multivariate approach using AAR and PEN in IVD and EPI  

The relatively high MAEs for age estimates based on single parameters reflect the 

complexity of the aging process in the different biological subsystems.  

The inclusion of more than one parameter in the models for age estimation led to 

considerably lower MAEs (Table 1). While MAEs were 7.5 – 11.0 years in the univariate 

models, the multivariate model that included all parameters resulted in the lowest MAE of 4.0 

years. This is a very promising result – especially with regard to the underlying single data 

sets for PEN and D-Asp in IVD and EPI with a quite huge scattering of data at least in higher 

ages (Figures 2 and 5).  

 

The question arises, if this “pure protein approach” promises better results in postmortem 

age estimation than methods based on DNA methylation. This question is difficult to answer 

for several reasons. Many authors used MAEs and correlation coefficients as measures for 

the accuracy of age estimation. MAE and correlation coefficient for our multivariate protein 

model (4 years and 0.95, respectively) are very close to those of the best models for age 

estimation based on DNA methylation (ca. 3-5 years, [14, 64–66], for review see [7, 10, 11]). 

However, neither MAEs nor correlation coefficients do permit any exact statements regarding 
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the accuracy in individual cases [7]. Apart from that, situations in the context of the 

identification of an unknown deceased are highly variable (e.g. highly decomposed bodies, 

skeletons, body parts). The answer to the question, which approach is the best for a single 

case depends (1.) on the tissues available for the analysis, and (2.) on the applicability of a 

method under the conditions of advanced putrefaction. The data presented here prove the 

applicability of the multivariate protein approach to two tissues that are usually well 

preserved for a relatively long time during postmortem decomposition; moreover, PEN and 

D-Asp seem to be robust under diverse postmortem conditions. Up to now, there are only a 

few studies on the applicability of the DNA methylation approach to postmortem degraded 

tissues [67, 68]. It is the task of future research to further examine the repertoire of methods 

in terms of their applicability and accuracy under the diverse case scenarios of forensic 

practice. 

 

Conclusion and vision 

The presented results confirm the conclusion that multivariate models, using appropriate 

parameters, can be used to develop new age estimation methods that are more accurate 

and broader in scope than univariate methods. Some groups have already introduced 

multivariate models into the development of methods for mDNA based age estimation [59, 

64, 66, 69]. These models include the data for different mDNA markers but remain in one 

biological level. Moreover, there are already a few promising multivariate approaches that 

combine parameters concerning different biological levels, e.g. mDNA and morphology [70], 

or mDNA and signal-joint T-cell receptor excision circles (sjTRECs) [59]. Though the 

approach of Cho [59] is not applicable to highly decomposed bodies (since it is based on the 

analysis of blood), it is very interesting, as it shows that the combination of an mDNA model 

with another biomarker of aging (sjTRECs) may address a major problem of all methods of 

age estimation, namely the higher scattering of data with increasing age.  

In conclusion, the combined analysis of different molecular clocks in different tissues is a 

very useful approach for several reasons. It may improve predication accuracy especially in 

older ages [59], it offers new possibilities for age estimation in cases with advanced 

postmortem putrefaction and decomposition, and - from the perspective of basic sciences - it 

may contribute to a better understanding of complex aging processes.  

Our vision is the development of a system of multivariate models for age estimation that can 

be used in the multiple scenarios of forensic practice (e.g. advanced putrefaction, skeletons, 

body parts). In a next step, we will add the epigenetic clock (mDNA) to our protein clocks 

(PEN, D-Asp) and expand our set of tissues. 
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Fig. 1 Amino acid composition of the purified samples of intervertebral disc (IVD) (1a) and 

the epiglottis (EPI) samples (1b), as compared to the amino acid composition of standard 

samples (human collagen type 1, bovine elastin) 

ASX = asparagine and aspartic acid, THR = threonine, SER = serine, GLX = glutamine and 

glutamic acid, Pro = proline, HYP = hydroxyproline, GLY = glycine, ALA = alanine, VAL = 

valine, MET = methionine, ILE = isoleucine, LEU = leucine, TYR = tyrosine, PHE = 

phenylalanine, TRP = tryptophan, ARG = arginine 

 

Fig. 2 Intervertebral disc (IVD) samples (n=95): Accumulation of pentosidine (PEN) (2a) and 

D-aspartic acid (D-Asp, as ln((1+D/L)/(1-D/L))) (2b) in relation to age (PEN: r=0.84; D-Asp: 

r=0.73), samples with highly degenerative changes are marked (n = 41) 

D = D-aspartic acid, L = L-aspartic acid 

 

Fig. 3 Intervertebral disc (IVD) samples: Same pentosidine (PEN) data as in Figure 2a (n = 

95, r = 0.84), here with indication of samples from individuals with diabetic metabolic disorder 

(n = 9) 

 

Fig. 4 Intervertebral disc (IVD) samples: Same data as in Figure 2a and 2b (4a: data for 

PEN, 4b: data for D-Asp (as ln((1+D/L)/(1-D/L))), data for samples from cases with advanced 

postmortem putrefaction (n = 9), of burned bodies (n = 3) and of cases with exhumation (n = 

3) are added and indicated 

D = D-aspartic acid, L = L-aspartic acid 

 

Fig. 5 Epiglottis (EPI) samples (n = 95): Accumulation of pentosidine (PEN; r = 0.86) (5a) 

and D-aspartic acid (D-Asp, as ln((1+D/L)/(1-D/L)); r = 0.81) (5b) in relation to age 

D = D-aspartic acid, L = L-aspartic acid 

 

Fig. 6 Epiglottis (EPI) samples: Same pentosidine (PEN) data as in Figure 5a (n = 95, r = 

0.86), here with marking of samples from individuals with diabetic metabolic disorder (n = 9) 

 

Fig. 7 Epiglottis (EPI) samples: Same data as in Figure 5a and 5b (7a: data for PEN, 7b: 
data for D-Asp (as ln((1+D/L)/(1-D/L))), data for samples from cases with advanced 
postmortem putrefaction (n = 8), of burned bodies (n = 3) and of cases with exhumation (n = 
3) are added and indicated 

D = D-aspartic acid, L = L-aspartic acid 

 

Fig. 8 Multivariate model 3: Age estimates in relationship to the corresponding chronological 

ages (n = 95; mean absolute error = 4.0 (3.1 years for ages under 62 years, 4.9 years for 

ages above 62 years); r = 0.95) 
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GPR = gaussian progress regression 

 

Table 1 

Quality of age estimation by univariate and multivariate predictions 

IVD= samples from intervertebral discs, EPI = samples from epiglottis, PEN = accumulation 

of pentosidine, D-Asp = accumulation of D-aspartic acid, r = coefficient of correlation 

(Spearman), MAE = Mean absolute error) 
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